
A Survey on Tor and I2P

Bernd Conrad and Fatemeh Shirazi

Department of Computer Science, TU Darmstadt
Darmstadt, Germany

Email: {bconrad,fshirazi}@cdc.informatik.tu-darmstadt.de

Abstract—This paper gives a short introduction and a comparison
on two low-latency anonymous communication networks. The
main part features a review of the low latency anonymous
communication networks, namely, The Onion Routing (Tor) and
the Invisible Internet Project (I2P). An introduction to their
overall structure is given, followed by a detailed description of the
core parts of both networks. Furthermore, a comparison of both
will feature important aspects like node selection, performance
and scalability. The detailed description and comparison of the
two systems show that determining which system to use highly
depends on the field of application, since each system has its
strength and weaknesses in specific areas.

Keywords–Tor; I2P; low latency anonymous communication
networks.

I. INTRODUCTION

When communicating over the Internet, IP addresses are
used to provide a unique identifier to address each party. Even
if a message is encrypted to protect the data content, source and
destination address are contained in clear in the corresponding
IP datagram headers, otherwise messages could not be routed
to their destination. Thus, communication over the Internet is
not anonymous. An adversary monitoring the network traffic
could easily identify two parties communicating with each
other. Anonymous Communication Networks (ACNs) are an
essential building block for protecting privacy online, as they
enable users to communicate anonymously over the Internet.
Using the ACN, users can conceal the destination of their
communications towards local adversaries, e.g., their ISP, as
well as protect their identity towards the destination itself,
e.g., a website. Typically, an ACN is an overlay network
composed of a set of routers (also-called relays, or nodes),
in which packets are relayed using multiple routers to achieve
anonymity. In general, anonymous communication networks
can be divided into two main categories; high latency anony-
mous communication networks in which it takes a relatively
longer time for the message to travel through the network
and reach it’s destination, usually ranging from a few hours
to several days [1]. This delay is tolerable when using those
systems for non-interactive applications like email, however to-
day most applications on the Internet are real-time, interactive
applications that require a low latency, e.g., web browsing.
Systems designed to provide anonymity and low latencies
when using real-time, interactive applications are called low-
latency anonymous communication networks. In this paper, we
review and compare Tor [2][3] and Invisible Internet Project
(I2P) [4], which are currently among the most commonly
used low latency anonymous communication networks. Other
examples of practical anonymous communication networks are
Freenet [5][6], JAP [7][8], and GNUnet [9][8]. Regardless of

several similarities, Tor and I2P have noticeable differences,
which makes them preferable for specific usages. In order to
be able to decide on which one of them to use, one has to fully
understand these differences. In this paper, we review some of
the main differences between Tor and I2P.

The remaining paper is organized as follows: A short intro-
duction to the anonymous communication network Tor is given
in Section 2. Section 3 describes I2P and its core elements.
Finally, a comparison of both systems will be presented in
Section 4. Section 5 concludes.

II. ONION ROUTING AND TOR

One approach to achieve low latencies and at the same time
protect against a strong adversary is the arguably most preva-
lent onion routing design [1], a distributed overlay network
designed to anonymize TCP-based applications [3]. According
to Danzis and Diaz [10] “the objective of onion routing is to
make traffic analysis harder for an adversary, as well aims first
at protecting the unlinkability of two participants who know
each other from third parties, and secondly, at protecting the
identities of the two communicating parties from each other”.

A set of servers called Onion Routers (OR) are used to relay
messages. Each OR maintains a private and public key pair,
while the public part should be known to all clients wishing to
participate in the network. Clients choose an ordered sequence
of ORs they want to use to relay their data and establish a
so-called circuit, a bidirectional tunnel. This method is called
onion encryption and will be described more precisely later on.
Each layer contains a symmetric key, a label and addressing
information about the next OR. Messages sent through circuits
are also onion encrypted, this time using the symmetric key
of each OR [10]. Each OR is only able to remove the
corresponding layer of encryption and forwards the message to
the next OR in the circuit. The last OR in the circuit is able to
forward the message to its destination. The potential response
of the receiver is sent to the last OR in the circuit and is relayed
back to sender through the exact same circuit. This time,
each OR adds a layer of encryption to the message. Hence,
another onion encrypted message is constructed that only the
sender is able to decrypt and therefore recover the response.
An important fact in regards to anonymity and security is that
only the first OR in a circuit knows the IP address of the
client, and only the last OR of a circuit knows the receiver of
a message. All intermediate ORs only know its predecessor
and its successor, without even knowing which other ORs
are participating in the circuit [3]. A circuit may be used to
relay multiple messages from a single application [1], but each
TCP stream needs its own circuit [3]. The ORs implement a
very close to first-in first-out mixing strategy to provide low

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

latency. This makes onion routing susceptible to a number of
attacks. Due to missing cover traffic, an adversary may use
traffic analysis and timing attacks to monitor a traffic pattern,
follow the message stream and identify communicating parties
[10][11]. Nonetheless, onion routing is a promising design to
provide a low latency anonymous communication network and
many currently used systems are built upon this design.

A. Tor
Tor is a distributed-trust, circuit-based low latency anony-

mous communication network. It builds upon the onion routing
design, but makes many modifications and improvements in
regards to security, efficiency, and deployability [1]. The Tor
network is an overlay network that uses a set of volunteer
servers, called Onion Routers (OR), to build circuits and relay
messages [11]. Each user runs a software called Onion Proxy
(OP) that manages all Tor related processes, e.g., establishing
circuits or handling connections from user applications [3].
To build a circuit, the OP select an ordered set of usually
three ORs out of the set of all known ORs. The first OR
in the set is called entry guard, the last is called exit router
and all others are called intermediate routers [12][13]. The
process of selecting ORs for a circuit is called node selection
and will be described more precisely later. To obtain a list
of all known ORs, a set of directory authority servers are
used. After selecting a set of ORs, the OP contacts the entry
guard and builds a circuit with it. This newly created circuit
is used to contact the next OR to extend the circuit. This
procedure is iteratively repeated until all ORs of the set are
part of the circuit. The established circuit can now be used to
anonymously relay messages. Messages are onion encrypted
and only the exit router is able to access and forward a message
to its destination.

Onion Router: Onion Routers (OR) are the core part of
the network since they are necessary to build circuits. All
ORs are connected with each other using Transport Layer
Security (TLS) connections. This prevents an attacker from
modifying data or impersonating an OR [3]. Each OR also
maintains two keys: a long-term identity key, used to sign
TLS certificates, router descriptors, and directories; and a
short-term onion key, used to decrypt user requests to build
a circuit and negotiate short-lived symmetric keys [3][11].
Router descriptors uniquely identify each OR and contain all
relevant data to contact and list an OR: public keys, IP address,
bandwidth, exit policies, and more [3]. Exit policies describe
which hosts and ports the OR is willing to connect to, this
is particularly important for the later described node selection
process.

Directory Server: To be able to retrieve a list of all available
ORs, authoritative directory servers distributing signed directo-
ries are used [12]. These servers need to be well-known, which
means that the IP addresses of this servers are commonly
known and/or published on specific websites, and able to track
changes in network topology. The directory contains the router
descriptor of each listed OR and a network status document.
The network status document contains measured bandwidths
of ORs. Only ORs that are verified via their identity key
are listed in the directory, otherwise they are ignored. There
are multiple directory servers to protect against active attacks
against directory servers [3], e.g., potentially by Denial-of-
Service (DoS) attacks, which prevents having a single point of

failure. All directory servers also merge their known topology
of the network with each other and release a common signed
directory of the whole network. Directories are automatically
fetched by the OP. The client software also contains a default
list of directory servers [3].

Node selection: To guarantee a good performance and to
prevent choosing a corrupted OR as entry guard, the Tor client
uses a path selection algorithm to select the ORs used to build
circuits [14]. All known ORs are categorized into three tiers:

• Entry guard router: Stable, fast and well-known ORs.
• Intermediate router: All known ORs.
• Exit router: ORs with matching exit policies.

The network status document and all router descriptors main-
tained by the directory servers are fetched by the OP. Both
contain router bandwidth information. The router descriptor
contains a self-advertised bandwidth and the network status
document contains a value measured by the directory servers.
As long as the measured value is available, it will be preferred
due to the fact that self-advertised information are considered
not trustworthy. The bandwidth information is used to select
the intermediate and exit routers in a weighted probabilistic
manner [14]. This means a router with a higher bandwidth is
more likely to be chosen.

The OP maintains a list of three potential entry guards,
chosen from a list of all ORs with a long uptime and known
to be fast and stable [14]. The entry guard is then randomly
chosen from this list of three entry guards, and used for all
circuits. After normally 30 days, the list of three entry guards
is rebuilt and a new entry guard is chosen. ORs serving as exit
routers can also be considered as entry guards and intermediate
routers, but “only if the available total bandwidth of exit nodes
is at least one third of the overall available bandwidth of all
routers”, also, to provide load balancing, “their probability of
being chosen is lowered in a weighted way” [14].

Cell: Tor uses a special format, called cells, for all messages
that are sent through the network. Cells have a fixed size of
512 bytes and consist of a header and a payload. Tor uses
two kinds of cells, control cells and relay cells. Control cells
are used to set up, maintain and destroy circuits. Relay cells
are used to relay messages along the circuit. Relay cells also
contain an additional header in front of the payload used to
distinguish between different streams and to perform end-to-
end integrity checking [3]. The additional header also allows
the network to detect congestion or flooding, and therefore
reduce outgoing traffic until the congestion subsides [3].

Circuit: A circuit is a bidirectional virtual connection set up
between the OP and an ordered set of ORs. In contrast to onion
routing, a single circuit can be used by multiple TCP streams
at the same time. To prevent an adversary from linking streams
together, the default circuit lifetime is 10 minutes. After this
time, a circuit is destroyed and a newly built circuit is used.
Building new circuits is done beforehand in the background,
therefore no additional latency is generated [3].

Onion Encryption: After establishing a circuit, the OP can
start sending data messages within relay cells. Similar to the
onion routing design the header and payload of a cell is
iteratively encrypted using the symmetric key of each OR
participating in the circuit [3]. Starting with the key of the exit
router, traversing the circuit using the key of each intermediate

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

OR until the entry guard is reached. The following example
shows the encryption process for three ORs, whereas k1 is
the key of the entry guard, k2 the key of the intermediate
router and k3 the key of the exit router. Ek1(Ek2(Ek3(cell)))
This procedure is called onion encryption. As the cell moves
along the circuit, one layer per OR is removed. Only the exit
router is able to extract the destination address and the payload,
which may be the actual plaintext or an end-to-end-encrypted
message, and forwards the payload to its destination. The reply
can only be sent back along the same circuit. Each OR in
the circuit adds his layer of encryption, using his negotiated
symmetric key, before relaying the cell to its predecessor. Only
the OP is able to fully decrypt the onion encrypted reply, since
he is the only one that knows all negotiated symmetric keys.

III. I2P
I2P is a message-oriented, peer-to-peer-based low latency

anonymous communication network. The network was mainly
designed to enable fully anonymous communication between
two parties inside the network [15][16]. I2P was first proposed
in 2003, having its roots in the Invisible Internet Project (IIP)
[17][18]. A wide range of applications inside the I2P network
are available, e.g., anonymous web-hosting, web browsing,
file-sharing, email and many more. Using external services,
meaning services that are not hosted within the I2P network,
requires the use of an out-proxy [16]. At the time of writing,
the I2P network consists of 23738 routers with an average
count of 25687 routers [19].

I2P is an overlay network allowing users to anonymously
interact within the network. Technically, I2P is a multi-
application Java framework designed to provide anonymous
P2P networking [20]. Each user is running a so-called I2P
router, the core part of the I2P software. All messages are
relayed through tunnels built by each I2P router using other
I2P peers. Tunnels can only be used in one direction; therefore,
tunnels for outgoing and incoming traffic need to be built,
so-called inbound and outbound tunnels. The selection of
peers is done via a tier-based peer selection algorithm running
on each I2P router. After establishing inbound and outbound
tunnels clients may publish their contact information in a
global database, called netDB. The netDB contains contact
information for each I2P peer and each publicly running
service inside the I2P network. Messages sent through the
I2P network are end-to-end encrypted using garlic encryption.
Garlic encryption is very similar to onion encryption, with the
difference that multiple data messages may be contained in a
single garlic message. Therefore, a single garlic message may
contain multiple messages for different recipients.

I2P Router: The I2P network is formed by peers (also-called
clients, nodes or router) running the I2P software, allowing
applications to communicate through the I2P network [16]. The
core part of this software is the I2P router. The I2P router is
responsible for maintaining peer statistics, which are required
for the peer selection described later, performing cryptographic
operations, building tunnels, providing services and relaying
messages. Applications heavily rely on the tunnels built by
the I2P router to remain anonymous [20].

NetDB, RouterInfo and LeaseSet: Super-peers, called flood-
fill peers, are used to build and manage a network database,
called netDB. The netDB is based on a distributed hash table
and contains all known information about the I2P network,

therefore all I2P peers and services. Each floodfill peer is only
responsible for information of a specific part of the network.
The Kademlia XOR distance metric [21] is used to determine
which part of the network a floodfill peer is responsible for,
based on the peers ID [20]. Peers with sufficient bandwidth
may get promoted to floodfill peers if the amount of available
floodfill peers drops below a certain threshold [22]. The
netDB stores two types of data, a routerInfo structure that
describes an I2P peer and a leaseSet for each known service
[23]. All I2P peers are identified by a data structure called
routerInfo, containing all important information about the peer
(IP address, port, peer ID, I2P stable version number, network
version, transport capabilities and some statistical data [23]),
his public key and a 256 bit hash-identifier. To retrieve an
initial list of available I2P peers, a list of routerInfos can be
downloaded from a non-anonymous, well-known web server.
Retrieving the initial list of routerInfos is called reseeding
[20][23].

A leaseSet is used to store information about how to
contact an internal I2P service, called destination. The leaseSet
specifies a set of entry points, called leases. A lease identifies
a peer that serves as an inbound gateway to an inbound
tunnel of the corresponding service [20]. Both, routerInfos
and leaseSets, can easily be stored and retrieved by contacting
the nearest floodfill peer. In case of storing, the floodfill peer
will distribute the received routerInfo or leaseSet to the seven
nearest floodfill peers. In case of retrieving, the two closest
floodfill peers are contacted. If the requested information is
not available, the floodfill peer replies with a list of other near
floodfill peers. The peer keeps contacting floodfill peers until
the needed information is retrieved or all floodfill peers have
been contacted [20].

Destination: All destinations in the I2P network are iden-
tified by a 516 byte crypto key that consists of a 256-byte
public key, a 128-byte signing key and a (currently unused)
null certificate. A destination in I2P refers to an internal service
provided by an I2P router. To map destination names to their
crypto key, three local host files are used, similar to traditional
DNS. To merge external and local host files, I2P provides an
address book application [18][22]. This way of addressing each
individual destination further increases the anonymity since it
also decouples the service from the I2P router its provided by
[16].

Tunnel: All messages in the I2P network are transmitted
through so-called tunnels. A tunnel is a unidirectional en-
crypted virtual connection using typically 2 to 3 I2P peers
[23][18]. Unlike Tor the I2P router seeking to establish a tunnel
is also part of the tunnel. At startup each I2P router builds up
some tunnels for incoming traffic, called inbound tunnel, and
outgoing traffic, called outbound tunnel. The first I2P peer of
a tunnel is called tunnel gateway, the last I2P peer of tunnel
is called tunnel endpoint. For outbound tunnels, the I2P router
that established the tunnel is always the gateway. For inbound
tunnels, the I2P router that established the tunnel is always
the endpoint. The default amount and length of tunnels can
be specified by the user in the I2P settings. The length of a
tunnel is a trade-off between performance and anonymity [20].
Longer tunnels increase the anonymity, while they decrease
the performance and the other way round. An application is
not bound to a specific tunnel and may use different tunnels
to relay messages. There are two kinds of tunnels, exploratory

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

and client tunnels [17]. Exploratory tunnels are low bandwidth
tunnels and not used for privacy-sensitive operations. A router
uses this tunnel to contact floodfill peers and retrieve the
netDB. Exploratory tunnels are also used to build, manage
and destroy other tunnels [23]. Client tunnels are used to relay
application messages and retrieve leaseSets; therefore, are high
bandwidth tunnels. Tunnels have a maximum lifetime of 10
minutes. After this period of time the tunnel is destroyed and a
new one is used. Constantly rebuilding tunnels seeks to prevent
traffic analysis attacks [16].

Tunnel Establishment: Building a new tunnel is done by
first selecting an ordered set of I2P peers. This selection of
peers is done with tier-based peer selection and peer profiling
to categorize peers into tiers. An exploratory tunnel is used
to send a single, multiple times encrypted tunnel construction
request to the first I2P router. Every layer contains necessary
information for each single I2P peer, e.g., symmetric key and
successor address. Like in the original onion routing design the
message is forwarded until it reaches the last I2P peer of the
tunnel. The response is then routed back to the originator while
each I2P peer adds a layer of encryption [24]. The receiving
I2P peers are free to decide if they want to decline the request
or accept to participate in the tunnel. An already established
tunnel can still fail at any time if, e.g., the I2P peer is not able
to handle the traffic or leaves the network (goes offline) [20].

Tier-based Peer Selection and Peer Profiling: Tier-based
peer selection is the process of selecting peers used to build
a tunnel based on tiers they are assigned to. Peer profiling is
used to categorize peers into those tiers. Peers sharing a tier
share certain performance characteristics [23]. Peer profiling is
done by the I2P router, he keeps track of various performance
statistics of other peers and maintains a database containing
this statistics, called profiles. However, no active bandwidth
probing or other actions that may generate non-data traffic are
used. Every 30 seconds all profiles are sorted into three tiers
based on various metric like speed and capacity [23][20]:

• Not-failing: All known peers. Typically 300-500 peers.
• Well-integrated: Peers that claim to know many other

peers.
• High-capacity: Peers that are known to most likely

accept tunnel build request. Typically 10-30 peers.
• Fast: Peers from the high-capacity tier with a high

bandwidth. Typically 8-15 peers.

Note that all fast tier peers are always also high-capacity tier
peers [23]. When constructing a client tunnel, peers from the
fast tier are used. If no sufficient amount of fast tier peers is
available, high-capacity tier peers are selected. High-capacity
tier peers are used when constructing an exploratory tunnel.
Both, the well-integrated and not-failing tier peers are fallback
options, if no high-capacity and fast tier peers are available.
However this is unlikely to happen in practice [20]. The actual
selection of peers for exploratory tunnels is done using a
weighted random function [23]. Also peers sharing the same
/16 subnet will not be used together within the same tunnel
[23].

Garlic Routing, Garlic Message and Garlic Encryption:
When at least one outbound and one inbound tunnel is con-
structed, the I2P router is able to send and receive messages
through the I2P network. To communicate with an I2P service,

the router first needs to retrieve the destination of this service
from a floodfill peer [17]. The destination specifies a set of
inbound tunnel gateways of the corresponding service. I2P
uses so-called Garlic routing, a variation of the onion routing
design described in Section II. Garlic routing uses garlic
messages that can contain multiple so-called cloves. Cloves are
data messages with additional routing instructions like delays.
This means a garlic message may contain multiple application
messages. The actual data messages are end-to-end encrypted
with the receiver’s public key. The garlic message itself is
encrypted multiple times using the symmetric keys negotiated
with the tunnel peers [22][20]. When traversing the tunnel,
each I2P peer removes one layer of encryption until the garlic
message reaches the outbound tunnel endpoint. The outbound
endpoint forwards each message to its destination’s inbound
tunnel gateway. The inbound gateway will forward the garlic
message to the actual recipient while each peer participating
in the tunnel adds a layer of encryption (using the negotiated
symmetric keys). Only the recipient is able to remove all
encryption layers of the garlic message as well as the end-to-
end encryption of the data-messages [20][17]. As mentioned
before, if a service outside the I2P network is addressed, an
outproxy has to be used [18], although according to Schimmer
et al. [23] “only one HTTP outproxy is publicly advertised and
accessible”. When using an outproxy, end-to-end encryption is,
similar to Tor, not guaranteed, since it depends on the transport
layer protocol that is used.

IV. TOR VS I2P
There are a few obvious difference between both networks.

While Tor is relying on servers provided by volunteers to
build circuits, I2P uses peers with sufficient performance
characteristics participating in the network to build tunnels.
Also, Tor is optimized and designed for exit traffic with a large
number of exit routers, whereas I2P is designed to provide
services inside the network and only features a small set
of outproxies [25]. Nonetheless, both seek to provide strong
anonymity with low latency when using real-time, interactive
services. A comparison of a few important aspects of anony-
mous communication networks is presented as follows.

SOCKS vs I2P API: While this seems like a rather technical
aspect, it greatly changes the effort and ability to build appli-
cations that use either the I2P or Tor network to anonymously
communicate over the Internet. Tor uses the Socket Secure
(SOCKS) interface and therefore SOCKS-aware applications
may be easily pointed at the Tor software, which then handles
everything else. Tor, in this case, acts as a proxy server. This
means, applications able to use SOCKS can be used without
any changes [3]. I2P, on the other hand, is a middleware
providing APIs that applications can use to communicate
through the network, meaning applications either need to be
costly adjusted, if at all possible, or implemented from scratch.
The use of SOCKS by Tor has two downsides:

1) The SOCKS interface is only able to transmit mes-
sages over TCP while I2P has the choice between
UDP and TCP [25]. This may enable I2P to deliver
better performance when using certain applications.

2) Messages sent by applications may still contain in-
formation that could identify the sender. To prevent
this, application-level proxies with filtering features,
e.g., Privoxy, need to be used [3].

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

Available Applications: Both, I2P and Tor feature a wide
range of applications, whereas most I2P applications are
exclusively made to access services inside the I2P network,
with some exceptions, e.g., Susimail/2IpMail is able to send
and receive mails from the public Internet [18]. Tor on the
other hand, due to the fact it is using the SOCKS interface
as mentioned before, is able to be used with any application
able to be configured using a SOCKS proxy, e.g., nearly every
commonly used web browser.

Message Security and Anonymity: Both networks feature
various layers of encryption, starting with transport layer
encryption provided by the TLS connection maintained by the
ORs or respectively I2P peers. I2P also features an additional
tunnel encryption. Messages sent through the networks are
either onion or Garlic encrypted. This means the connection
from the user to the tunnel or circuit is always encrypted. As
long as interacting inside the network, messages in I2P are also
end-to-end encrypted. In the case of Tor, end-to-end encryption
can not be guaranteed since it depends on the transport layer
protocol that is used. Therefore, insecure protocols should not
be used, as a corrupted exit node may record messages sent
in plaintext and recover usernames and/or passwords [12]. In
Tor only the first OR of a circuit knows the IP address of the
actual user, all subsequent ORs only know its predecessor and
successor. Also only the last OR in the circuit knows the actual
receiver. Nonetheless, this is a potential risk since corrupted
ORs may be able to link communicating parties together.
Therefore, the user’s anonymity highly depends on Tors node
selection algorithm selecting trustworthy entry guards. In the
case of I2P even the first peer does not know if it is forwarding
the message for another peer that is part of the tunnel or
the actual sender. Therefore, entry guards like in Tor are not
necessary.

Performance: In 2011, Ehlert analyzed and compared the
latency and bandwidth when accessing the public Internet with
either I2P or Tor [17]. The latency when issuing simple HTTP-
GET-Requests and the average latency when accessing whole
web pages were recorded and evaluated, as well as the down-
load speed when receiving files from a fixed location. While
I2P was able to achieve better results when issuing simple
HTTP-GET-Requests, Tor provides clearly better results in
terms of accessing whole web pages and downloading files.
In 50% of all cases Tor was able to retrieve a whole web
page in less than 16.99 seconds, while 50% of the I2P request
took up to 103.19 seconds. In case of download speed, Tor
was able to deliver an average speed of 51.62 kB/s compared
to the 12.91 kB/s of I2P. The author also seeks to explain
why I2P is scoring better results than Tor when issuing simple
HTTP-GET-Requests. He states, that the discrepancy may be
explained with the good distribution of I2P peers in Europe
and therefore good latencies when issuing simple HTTP-GET-
Request. For further information see [17].

Scalability: Increasing the number of clients participating
in the anonymous network directly influences both Tor and
I2P. Although the anonymity set becomes larger and there-
fore stronger anonymity may be present, the network traffic
increases and may cause problems like congestion. In case of
Tor this means, the amount of routers used to build circuits
may very likely need to be increased. This problem may
get even worse due to the fact that only a small subset of
all ORs is used as entry guards and exit routers. This may,

depending on the amount of new clients joining the network,
sooner or later lead to congestion problems and therefore
increase the latency and decrease the available bandwidth.
Congestion and high latencies will directly affect the user
experience and network usability. Increasing the amount of
ORs also serves another problem, the growing directory. On
the one hand additional bandwidth is used to receive directories
and on the other hand the effort to keep track of the whole
network increases. As mentioned before, Tor also uses active
bandwidth probing which additionally increases the traffic
depending on the amount of new ORs joining the network.
Also the assumption that every OR in the network is able
maintain a direct connection to each other OR seems rather
unlikely as the number of ORs increases [1][3]. In case of
I2P, new peers joining the network may also be peers that
can be used to build tunnels, assuming they provide enough
capacity and bandwidth. Therefore, congestion is not likely
to appear, however, if a sufficient number of clients seek to
access services outside the I2P network, more outproxies may
have to be provided. Apart from that, more clients joining the
network provides a lot of benefits:

1) The amount of potential fast tier peers will most
likely increase and therefore tunnels with less latency
and more bandwidth may be the consequence.

2) The amount of cover traffic in the network will
most likely increase and therefore provide a stronger
anonymity.

3) With more clients using the network, it is very likely
a greater range of services will be provided.

Centralization: In Tor, the network is not fully distributed
as it is in I2P. The information about the relay nodes and
the hidden services are provided by (currently 9) authorized
directories which are placed in US and Europe. These autho-
rized directories keep track of changes in the network and
distribute this information, therefore if all of them collude the
anonymity is endangered. However, in I2P such centralization
doesn’t exist. Each participating relay locally maintains a list
of all known relays.

Routing and Node Selection: Both Tor and I2P run specific
node selection algorithms to improve performance and protect
against adversaries. While Tor distinguishes between entry,
exit and intermediate nodes, I2P has none such. In case of
I2P, each peer selected for a specific tunnel may either be
the first, the last or an intermediate peer. To be able to select
intermediate and exit routers, Tor’s directory servers use active
bandwidth probing to measure and record the bandwidth each
OR is able to provide. This generates non-data message traffic.
Also Tor has to rely on self-advertised bandwidth values if
no probing data is available for this specific OR. This may
lead to misclassification or may potentially be used by an
adversary to classify his OR as an entry guard. With the
exception of the entry guard, which is chosen from a small
set of well-known ORs with long uptime, all other ORs in Tor
are chosen with a probability proportional to its bandwidth
[3]. This means only bandwidth and capacity are considered
while other attributes like the actual location of the ORs are
ignored. This may lead to high latencies when ORs are chosen
that are, for example, located on different continents. In case
of bandwidth, this way of selecting nodes may be optimal, but
when taking into consideration, that the latency is an important
point when browsing websites, this may not seem to be the

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

optimal way. The current load of the network is also not
considered; therefore, existing resources may not be optimally
used [3].

I2P clients on the other hand solely rely on previously
monitored performance values and the current state of the
network. No active bandwidth probing is used. The I2P node
selection algorithm is also able to react very fast to failing
peers and other changes in the network topology. This behavior
of quickly reacting to failing nodes also holds a security
problem. As described by Herrmann and Grothoff [20], a
selective DoS attack targeting the current fast tier peers may
give an adversary the possibility to inject his own corrupted
peers into the fast tier. Due to the short lifetime of tunnels,
some I2P users will most likely use one or more corrupted
peers to build their tunnels. This of course may lower the
grade of anonymity provided for this particular I2P users. The
location of I2P peers is also not considered when categorizing
them into tiers, therefore, similar to Tor, high latencies may be
the result. Last but not least, newly joined I2P peers may have
insufficient or outdated peer statistic and network informations
to select optimal tunnel peers.

Avoiding Congestion: Tor uses circuit switching, whereas
I2P uses packet switching, hence, Tor has often to cope with
high congestion leading to high latency [26]. Whereas in I2P,
the packet switching leads to some implicit load balancing
and helps to avoid congestion and service interruptions. This
is specifically important for large file transfers and therefore
I2P is more suitable for such purposes.

Usage: I2P offers several applications and is rather designed
for communication within the I2P network, in particular be-
cause it has few out-proxies. Whereas Tor is rather designed
for routing traffic outside the network and has in comparison to
I2P more exit nodes. In addition as mentioned in earlier in this
section Tor’s performance is better for visiting web pages than
I2P, which makes Tor a better choice for surfing. However, for
downloading I2P shows better results hence for applications
such as file sharing I2P is more suitable.

Attacks: There are essentially two main classes of attacks
that target the Tor network: Traffic analysis attacks [27],
[28] and DoS attacks. Attacks on Tor have been commonly
reviewed in the literature [29][1][30]. Grahn et al. give a review
on general anonymous communications, which includes Tor
and I2P [31]. Zantout et al. describe I2P and the known attacks
on I2P where the main attacks are classified as DoS attacks,
Partitioning attacks, and Intersection attacks [32]. Here, we
review some new attacks for both Tor and I2P. For our review
the main goal of the adversary is to identify peers (in the case
of I2P) or de-anonymizing users (in the case of Tor).

Recently, two DoS attacks have been proposed on Tor:
Johnson et al. propose the Sniper attack, which exploits the
reliable data transport in Tor by consuming a large amount
of memory [33], and Barbera et al. propose the CellFlood
attack [34], which exploits the circuit construction process in
Tor by flooding the router with circuit construction requests.
Both attacks exploit technical vulnerabilities of Tor. Another
known DoS attack on Tor, proposed in 2007 by Borisov et
al., is the selective DoS attack [35], which rather describes
the method for selecting nodes for the DoS attack and is not
proposing technical measures for performing the attack. The
main goal of DoS attacks against Tor is to either force users

to choose malicious routers which in turn reduces the smaller
user base and weakens anonymity [36]. More recently, website
fingerprinting attacks on Tor have been proposed by Wang
et al. which seek to deanonymize users by matching packet
quantities and sizes of received packets [37].

Herrmann et al. proposed an attack on I2P uses a sort of
selective DoS attack and exploits the node selection bias to-
wards nodes with good performance in order to de-anonymize
peers that are hosting Eepsites [20]. Crenshaw investigated de-
anonymization attacks on I2P connections by analyzing the
data that is leaked by applications that are run using I2P [38].
More recently, Egger et al. proposed some practical attacks on
I2P, where the attacker tries to break the anonymity of users
by using DoS and Sybil attacks [39] as part of her attack
scenario [40].

V. CONCLUSION

In this paper, two state of the art Onion Routing based low
latency anonymous communication systems were presented
and compared. While Tor is the at the moment most popular
and most used system, I2P is a fast growing competitor. Both
systems are constantly being updated to improve performance
and provide better anonymity while protecting against adver-
saries. Tor, due to the fact of it’s greater awareness in the
academic community, was already able to solve problems that
I2P will sooner or later have to face. Tor also benefits from
a large number of formal studies of its anonymity, resistance
to attacks, and performance. As pointed out before, the key
difference of both networks is the way they set up and use
their virtual connections, in terms of node selection and client’s
node participation. Another important difference is that while
Tor was designed for exit traffic, I2P seeks to provide services
inside the network to provide stronger anonymity for service
provider and users.

Overall, this comparison shows that it highly depends on
the field of application to determine which system delivers
better results in terms of performance and anonymity. When
browsing the public web, Tor undoubtedly delivers better
performance, while I2P is almost unusable. On the other hand,
I2P provides a stronger anonymity and better performance
compared to Tor when interacting with services or users inside
the network. In the end, it is always a trade-off between
performance and anonymity, no matter which system is used.

REFERENCES

[1] M. Edman and B. Yener, “On anonymity in an electronic society:
A survey of anonymous communication systems,” ACM Computing
Surveys (CSUR), vol. 42, no. 1, 2009, pp. 5:1–5:35.

[2] “The Tor project,” https://www.torproject.org/, accessed: 11/07/2014.

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.

[4] “The Invisible Internet Project project,” https://geti2p.net/en/, accessed:
11/07/2014.

[5] “The FreeNET project,” https://freenetproject.org/, accessed:
11/07/2014.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,” in
International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, 2001, pp. 46–66.

[7] “Project: AN.ON- anonymity.online,” http://anon.inf.tu-dresden.de/
index en.html, accessed: 11/07/2014.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

[8] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A system
for anonymous and unobservable Internet access,” in Proceedings of
Designing Privacy Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, H. Federrath, Ed. Springer-Verlag,
LNCS 2009, July 2000, pp. 115–129.

[9] “The GNUnet project,” https://gnunet.org/, accessed: 11/07/2014.

[10] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Computer Communications, vol. 33, 2008.

[11] J. Ren and J. Wu, “Survey on anonymous communications in computer
networks,” Computer Communications, vol. 33, no. 4, 2010, pp. 420–
431.

[12] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the Tor network,” in Proceedings of
the Eighth International Symposium on Privacy Enhancing Technolo-
gies (PETS 2008), N. Borisov and I. Goldberg, Eds. Leuven, Belgium:
Springer, July 2008, pp. 63–76.

[13] R. Snader and N. Borisov, “A tune-up for Tor: Improving security
and performance in the Tor network,” in Proceedings of the Network
and Distributed Security Symposium - NDSS ’08. Internet Society,
February 2008.

[14] A. Panchenko, F. Lanze, and T. Engel, “Improving performance and
anonymity in the Tor network,” in Proceedings of the 31st IEEE
International Performance Computing and Communications Conference
(IPCCC 2012), December 2012, pp. 1–10.

[15] J. Timpanaro, I. Chrisment, and O. Festor, “I2P’s usage characteriza-
tion,” Traffic Monitoring and Analysis, 2012, pp. 48–51.

[16] J. Timpanaro, C. Isabelle, F. Olivier et al., “Monitoring the I2P
network,” 2011.

[17] M. Ehlert, “I2p usability vs. Tor usability a bandwidth and latency
comparison,” Seminar Report, Humboldt University of Berlin, Novem-
ber 2011.

[18] “I2p...the *other* anonymous network,” http://sempersecurus.blogspot.
de/2011/06/i2pthe-other-anonymous-network 18.html, accessed:
08/07/2014.

[19] “stats.i2p - the home for NetDB statistics,” http://stats.i2p.to/, accessed:
08/01/2013.

[20] M. Herrmann and C. Grothoff, “Privacy-implications of performance-
based peer selection by onion-routers: A real-world case study using
i2p,” in Privacy Enhancing Technologies. Springer, 2011, pp. 155–174.

[21] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[22] T. E. Y. Iwan Hoogendoorn and J. Soeurt, “Further reducing the
anonymity set of web servers hidden within the i2p network,” 2011.

[23] zzz (Pseudonym) and L. Schimmer, “Peer profiling and selection in the
i2p anonymous network,” in Proceedings of PET-CON 2009.1, March
2009, pp. 59–70.

[24] “Tunnel implementation,” http://www.i2p2.de/tunnel-alt.html, accessed:
08/07/2014.

[25] “I2P COMPARED TO TOR AND FREENET,” http://www.i2p2.de/
how networkcomparisons.html, accessed: 08/07/2014.

[26] R. Dingledine and S. J. Murdoch, “Performance improvements on Tor
or, why Tor is slow and what we’re going to do about it,” The Tor
Project, Tech. Rep. 2009-11-001, November 2009.

[27] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Security and Privacy, 2005 IEEE Symposium on. IEEE, 2005, pp.
183–195.

[28] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-
resource routing attacks against Tor,” in Proceedings of the 2007 ACM
workshop on Privacy in electronic society. ACM, 2007, pp. 11–20.

[29] N. Danner, S. Defabbia-Kane, D. Krizanc, and M. Liberatore, “Effec-

tiveness and detection of denial-of-service attacks in Tor,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 3, Nov. 2012, pp. 11:1–11:25.

[30] T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C. Price, “Browser-
based attacks on Tor,” in Proceedings of the 7th International Con-
ference on Privacy Enhancing Technologies, ser. PET’07, 2007, pp.
184–199.

[31] K. J. Grahn, T. Forss, and G. Pulkkis, “Anonymous communication
on the internet,” in Proceedings of Informing Science & IT Education
Conference (InSITE) 2014, December 2014, pp. 103–120.

[32] B. Zantout and R. Haraty, “I2p data communication system,” in
Proceedings of ICN 2011, The Tenth International Conference on
Networks, January 2011, pp. 401–409.

[33] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the Tor network,”
in To appear in Proceedings of the 21st Annual Network & Distributed
System Security Symposium (NDSS ’14). Internet Society, 2014.

[34] M. V. Barbera, V. P. Kemerlis, V. Pappas, and A. Keromytis, “CellFlood:
Attacking Tor onion routers on the cheap,” in Proceedings of ESORICS
2013, September 2013, pp. 664–681.

[35] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security? How attacks on reliability can compromise
anonymity,” in Proceedings of CCS 2007, October 2007, pp. 92–102.

[36] R. Dingledine and N. Mathewson, “Anonymity loves company: Usabil-
ity and the network effect,” in Proceedings of the Fifth Workshop on
the Economics of Information Security (WEIS 2006), R. Anderson, Ed.,
June 2006.

[37] T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,” in
Proceedings of the 12th ACM workshop on Workshop on privacy in
the electronic society. ACM, 2013, pp. 201–212.

[38] A. Crenshaw, “Darknets and hidden servers: Identifying the true
ip/network identity of i2p service hosts,” in Proceedings of Black Hat
2011, January 2011.

[39] J. Douceur, “The Sybil Attack,” in Proceedings of the 1st International
Peer To Peer Systems Workshop (IPTPS 2002), March 2002, pp. 251–
260.

[40] C. Egger, J. Schlumberger, C. Kruegel, and G. Vigna, “Practical attacks
against the I2P network,” in Proceedings of the 16th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID
2013), October 2013, pp. 432–451.

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-362-9

ICIMP 2014 : The Ninth International Conference on Internet Monitoring and Protection

